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2. STATEMENT OF THE PROBLEMS STUDIED 

During the time period covered by the ARO grant, we have investigated several coherent nonlinear effects in 
semiconductors. The investigations include both experimental and theoretical studies. They include various 
geometries (bulk semiconductors, semiconductor quantum wells, semiconductor micro cavities and vertical- 
cavity surface-emitting lasers) and a number of different optical excitation conditions. Common to all 
investigations is the issue of the ultrafast, coherent, nonlinear optical response of the semiconductor in the 
spectral vicinity of the fundamental band gap (especially the heavy-hole-exciton and light-hole-exciton 
response). Our studies included light-pulse propagation dynamics, vectorial polarization dynamics, and 
polarization-dependent excitonic population dynamics. The central issue common to all those individual studies 
was the role of semiconductor-specific many-body effects; in other words, the question of whether the observed 
and/or predicted effects can be understood in terms simple 2-level or 3-level dynamics. Quite generally, the 
answer to this question determines how future novel ultrafast optical semiconductor devices can be optimized in 
their performance. 

Basically, we found in practically all areas significant deviations of the observed and/or predicted effects from 
simple 2-level or 3-level dynamics. The following is a list of individual aspects of this investigation and the 
main results obtained either experimentally, or theoretically, or through a combined theory-experiment analysis. 

3. SUMMARY OF THE EXPERIMENTAL RESULTS 

1. We performed and reported an experimental study on coherent high intensity pulse propagation on the free 
exciton resonance in CdSe. Similar to the effect of self-induced transparency in atomic vapors our 
observations include pulse reshaping, pulse break-up, high transmission rates, and a minimum in the 
velocity dispersion for pulses tuned to the vicinity of the free exciton resonance. Self-induced transparency 
is a coherent pulse propagation phenomenon characterized by the almost unattenuated propagation of a 
pulse of 2^ area through several Beer's law absorption length. The observation of this effect requires the 
pulse duration to be smaller than the dephasing time of the relevant material excitation, otherwise 
incoherent pulse propagation occurs that is determined by linear absorption and, possibly, incoherent 
nonlinear absorption effects. Our system of choice are epitaxially grown CdSe crystals that exhibit an 
exciton resonance well separated from other bound and unbound electron-hole pair excitations with optical 



thickness CC L of 1.7 and 7, respectively. For the thinner sample the pulse transmission shows polariton 
beating as supported by model calculations. In the transmission of transform limited 180 fs pulses through 
the thicker sample we observe a temporal pulse break-up for intensities between 2 and 6 GW/cm2 that 
provides a clear indication for coherent long distance propagation. At even higher intensities self-phase 
modulation causes characteristic temporal and spectral pulse break-up. Our studies show that coherent, low 
loss propagation of short optical pulses very close to an exciton absorption resonance in a semiconductor is 
indeed possible. 

2. A theoretical study of soliton-like pulse propagation has been performed for both semiconductors and, as 
an additional investigation, for conventional nonlinear materials. In the case of semiconductors, we have 
found that certain preciously known analytical solutions for solitons in conventional materials can also 
describe the soliton-like solution in semiconductors, although the underlying physics in both cases are 
completely different. Based on the one-dimensional propagation model of Maxwell's equation in the slow- 
varying envelope approximation, and the two-band semiconductor Bloch equations restricted to single- 
exciton inter-band polarizations, the temporal soliton-like character of moderate-intensity picosecond light 
pulses has been found to be dominated by excitonic exchange interactions. In contrast, phase-space 
blocking effects have been found to play only a minor role. Detailed comparisons with the phenomenon of 
self-induced transparency (SIT) have revealed that the important McCall-Hahn area theorem, well known 
for 2-level atoms, takes a completely different form in semiconductors. "Whereas in 2-level systems the 
pulse area of the stable solutions is independent of the pulse duration, there is a distinct non-trivial relation 
between these two pulse characteristics in semiconductors. 

3. We verified experimentally the dynamic nonlinear optical skin effect in a semiconductor. This effect leads 
to an internal reflection at a propagating boundary between areas of high and low exciton densities. To 
provide experimental proof of this theoretically predicted nonlinear optical effect, we studied in detail the 
properties of reflected light upon the incidence of intense femtosecond laser pulses onto a ZnSe crystal that 
is characterized by high optical nonlinearity at the fundamental exciton resonance. In a single beam 
experiment the dynamic nonlinear optical skin effect is manifested by an increasing amount of light that is 
reflected at photon energies extending to more than 20 meV below the energy of the exciton absorption 
resonance. The reflectivity far away from the exciton transition is unusually high and we obtained 
reflectivity values that are even larger than unity at photon energies four times the FWHM below the 
exciton resonance. A vivid explanation is that the frequency of the photons reflected at the (propagating) 
internal boundary between areas of high and low exciton densities is red-shifted due to the 'moving mirror' 
(Doppler)effect. In a second step, this frequency shift of the internally reflected light was used to study the 
propagation of the density front. Performing pump-probe reflection experiments with 150 fs pulses we 
showed that the Doppler-shifted reflection is present only for the duration of the pump pulse, indicating 
that the front propagation decelerates directly after the pump pulse leaves the sample. The experimental 
results agree very well with advanced model calculations that model the density front excitation and 
propagation deceleration within approximately 100 fs. We find that the density front excited by the strong 
fs laser pulse can propagate with a velocity of up to 106 m/s. 

4. The following new coherent optical effect in semiconductors has been predicted: interaction -induced 
polarization rotation in uni-axially strained quantum wells. More precisely, we predict that high-intensity 
circularly-polarized ultra-short light pulses which are reflected at a uni-axially strained quantum well will 
induce a strong and time dependent change of ellipticity of the reflected light. This is caused by intrinsic 
exciton-exciton interactions. The theory on which these results are based is known as Hartree-Fock multi- 
band semiconductor Bloch theory. 

5. In addition to basic ultrafast nonlinear optical effects in semiconductors, we have investigated vectorial 
polarization properties of VCSELs. First, we derived and classified the vectorial eigenmodes of VCSELs. 



The core of the theory is a generalized vectorial transfer matrix method, and the basic ingredients are the 
cylindrical hybrid mode solutions of Maxwell's equations known for optical fibers. Combining the fiber 
mode theory with the generalized transfer matrix approach yields a complete characterization of optical 
mode frequencies, cavity-losses, longitudinal and transverse amplitude patterns of the electric and 
magnetic field in the VCSEL cavity, as well as the vector polarization characteristics of the fields. 
Furthermore, we have performed an investigation of the vectorial stability of linearly polarized 
fundamental modes in VCSELs with small amounts of anisotropic strain or stress in the optically active 
semiconductor quantum well. Our theory is a microscopic theory that includes the mutual dependence of 
dichroism and birefringence, and, based on this theory, we showed that for given nonzero strain one 
expects three pump current regimes, out of which two correspond to one stable linear polarization and one 
that corresponds to a bistable regime. 

6. As a theoretical extension and application of the theory of dark states in semi-conductors, we have studied 
and predicted the light-induced adiabatic population transfer in semiconductor quantum wells. The 
population transfer under consideration involves heavy-hole and light-hole bands in p-doped 
semiconductor quantum wells. The investigation was based on an appropriate generalization of the multi- 
band semiconductor Bloch equations. In particular, the influence of many-body effects due to the Coulomb 
interaction between charge carriers in semiconductors has been studied. Based on our theory we predicted 
that this type of hole-population transfer is indeed possible, and we found that dynamic energy 
renormalizations due to Coulomb exchange interactions as well as quasi-thermalization of charge carriers 
significantly modifies the transfer dynamics as compared to that in simple 3-level systems. 

7. Investigating the coherent response of a semiconductor quantum well to a strong resonant light field we 
reported the first experimental observation of multiple excitonic Rabi oscillations in a semiconductor 
material. Optical Rabi oscillations are amongst the most fundamental examples of coherent nonlinear light- 
matter interactions. In atomic and molecular two-level systems, optical Rabi oscillations are well 
established. Exposed to a strong stationary light field, the electron population oscillates between the lower 
and upper states with the Rabi frequency that is proportional to the dipole moment and the light field. 
Experimental difficulties arise from the fact that coherent processes in semiconductors are confined to 
much shorter times since the phases of the semiconductor excitations randomize over a characteristic time 
of hundreds of femtoseconds. Thus, experiments must be done with subpicosecond light pulses. Our 
experimental observation of excitonic Rabi oscillations in semiconductors was based on a unique pump- 
probe scheme. We excited the Rabi oscillations with a relatively long (770 fs) pump pulse and probed with 
a relatively short (150 fs) probe pulse to time gate the density oscillations. Utilizing pump and probe pulses 
that can be independently tuned in wavelength and temporally shaped we were able to create Rabi 
oscillations in the heavy-hole exciton density of an InGaAs quantum well and probe the transmission 
changes at the light-hole exciton transition. Since the light-hole exciton and the heavy-hole exciton both 
derive from the same conduction band oscillations in the heavy-hole exciton density manifest themselves 
in oscillations of the probe pulse absorption at the light-hole exciton resonance. We were also able to 
determine the dependence of the Rabi frequency upon pulse intensity. We found that the change in Rabi 
frequency with light intensity follows a square root behavior as in atomic two-level systems. However, 
modeling the experiment with the semiconductor Bloch equations shows that the Rabi frequency is 
renormalized due to Comlomb effects. Our results on this fundamental effect allowed us to analyze in a 
quantitative way analogies and principal differences in the coherent nonlinear response between two-level 
atoms and excitons in semiconductors. 

8. Another extension of the theory of dark states and, more generally, 3-band dynamics is the area of 3-band 
Rabi oscillations. This is another novel coherent effect that we predicted theoretically. In contrast to 2- 
level and 2-band Rabi oscillations, 3-level and 3-band Rabi oscillations have been found to offer a rich 
variety of oscillation dynamics involving both, radiative and non-radiative (Raman) transitions.  We have 



analyzed excitonic 3-band Rabi oscillations in semiconductor quantum wells and found that the 
combination of band-coupling effects and Coulomb effects drastically modifies the 3-band Rabi 
oscillations as compared to those in simple 3-level systems. 

9. We investigated experimentally and theoretically the coherently coupled optical Stark effect in a 
semiconductor three-state system under off-resonant excitation. This issue is a logical extension of the 
study of coherent exciton dynamics under resonant excitation condition (see above) that became possible 
by the granted six-month extension of the proposal. Semiconductor quantum wells that exhibit pronounced 
and well-separated heavy hole and light hole exciton resonances are in certain respects analogous to a 
three-state V-system. The optical response at the two resonances is coupled through a shared conduction 
band, as exhibited, for example, in our previous measurement of multiple excitonic optical Rabi 
oscillations. Here, we report on the observation of coherently coupled optical Stark shifts of heavy hole and 
light hole exciton resonances in an InGaAs multiple quantum well. The shifts are induced by 1.2 ps pulses 
pumping below the heavy hole exciton without excitation of a real exciton or carrier population. Since the 
splitting between heavy and light hole exciton resonance is even larger than the heavy hole exciton to pump 
photon energy detuning direct excitation of virtual light hole excitons is largely prohibit. This scheme 
enables us to study the heavy and light hole exciton dynamics solely induced by coherently driven virtual 
heavy hole excitons. We measured differential absorption spectra from weak, broadband probe pulses that 
reveal the dynamics of the semiconductor response at both heavy hole and light hole exciton resonance 
simultaneously. By employing both counter-circularly-polarized and co-circularly-polarized pump and 
probe, we were able to correlate shifts of heavy and light hole exciton states that share electron states with 
the same spin. In doing so, we have made the first measurement of the coherent coupling in a 
semiconductor three-band system under off-resonant excitation. The theoretical analysis shows that the 
leading contribution to the coherently coupled light hole exciton shift results from the shared electron state. 
Higher order Coulomb correlations play a minor rule as long as the pump energy is more than the biexciton 
binding energy below the heavy hole exciton resonance. 
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